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ABSTRACT: Engineered hemoproteins can selectively incorporate nitrogen from nitrene precursors like hydroxylamine, O-
substituted hydroxylamines, and organic azides into organic molecules. Although iron-nitrenoids are often invoked as the reactive
intermediates in these reactions, their innate reactivity and transient nature have made their characterization challenging. Here we
characterize an iron-nitrosyl intermediate generated from NH,OH within a protoglobin active site that can undergo nitrogen-group
transfer catalysis, using UV—vis, electron paramagnetic resonance (EPR) spectroscopy, and high-resolution electrospray ionization
mass spectrometry (HR-ESI-MS) techniques. The mechanistic insights gained led to the discovery of aminating reagents—nitrite
(NO,"), nitric oxide (NO), and nitroxyl (HNO)—that are new to both nature and synthetic chemistry. Based on the findings, we
propose a catalytic cycle for C—H amination inspired by the nitrite reductase pathway. This study highlights the potential of
engineered hemoproteins to access natural nitrogen sources for sustainable chemical synthesis and offers a new perspective on the

use of biological nitrogen cycle intermediates in biocatalysis.

itrogen is crucial for all life forms on Earth due to its
widespread presence in biomolecules and natural
products.l_3 Moreover, nitrogen-containing compounds are
essential in the pharmaceutical, petrochemical, and agro-
chemical industries.*”” Atmospheric nitrogen (N,), which
accounts for 78% of the Earth’s atmosphere, serves as the
primary source for all nitrogen-containing compounds in
nature. N, cannot be directly assimilated, however, and must
first be converted into ammonia (NH;) through nitrogen
fixation, and afterward undergoes various transformations
within the nitrogen cycle to become accessible to living
organisms (Figure la). 813 Despite the variety of potential
nitrogen sources produced through the nitrogen cycle, natural
enzymes are not known to use those for C—H bond amination.
Instead, biological systems rely on prefunctionalized carbon
centers to introduce nitrogen functionality, typically by
employing enzymatic processes such as reductive amination,
transamination, or hydroamination.14
Inspired by Dawson and Breslow’s demonstration that a
cytochrome P450 can catalyze C—H amination via a putative
iron-nitrenoid intermediate,'> researchers many years later
developed biocatalytic nitrene transfer for selective construc-
tion of C—N bonds.'*"” In particular, iron-nitrenoids have
emerged as powerful intermediates for C—H amination and
olefin aziridination using these engineered enzymes.'®™>
Previous reports have shown that hemoproteins can activate
organic azides and O-substituted hydroxylamines, forming and
transferring nitrenes to hydrocarbons (Figure 1b)."***~%°
Although these synthetic reagents are effective in generating
an array of C—N bonds, they also produce significant amounts
of byproducts and present sustainability challenges.
We are interested in engineering enzymes that can utilize
natural nitrogen sources for amination. Such engineered
reactivity might point to naturally occurring C—H function-
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alizing “nitrene transferases”, akin to the discovery that
cytochrome P450BezE is a naturally occurring olefin
functionalizing nitrene transferase that processes an O-
acetylated hydroxylamine precursor.”’ The discovery and
development of new amination reactions would benefit from
mechanistic understanding of the intermediates involved.
However, the exceptional reactivity of iron-nitrenoid species,
which makes them attractive for catalysis, also renders them
challenging to characterize.””™** Thus, efforts to develop new
and sustainable reactions mostly relies on insights from
computational methods.”~*'

Recently, we engineered a protoglobin from Pyrobaculum
arsenaticum to catalyze amination of benzylic C—H bonds
using hydroxylamine (NH,OH) as the aminating reagent.42
NH,OH plays a crucial role as an intermediate in the nitrogen
cycle, and the enzymatic reaction produces water as the sole
byproduct. We proposed formation of an iron-nitrenoid
intermediate from NH,OH analogous to generating Com-
pound I from the hydroperoxo intermediate in the
peroxygenase catalytic cycle, given that NH,OH is structurally
and electronically analogous to hydrogen peroxide
(HZOZ).43’44 However, in contrast to the peroxygenase cycle,
the NH,OH-mediated aminase cycle operates under a
reducing environment. The exact mechanism by which
NH,OH promotes amination is unknown. To obtain a better
mechanistic understanding, we investigated the nitrogen-group
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Figure 1. (a) Simplified depiction of the biological nitrogen cycle,
highlighting the nitrogen intermediates that could be leveraged to
develop new amination reactions. (b) Previous biocatalytic nitrene
transfer reactions used chemically synthesized organic azides and O-
substituted hydroxylamines as nitrogen precursors.

transfer chemistry by protoglobin using NH,OH, employing
spectroscopic techniques for our analysis. Moreover, consid-
ering the role of NH,OH in the nitrogen cycle, we
hypothesized that investigating the mechanism could give
insights into how to access other naturally occurring nitrogen
intermediates.

We initiated these studies by examining the spectral features
of protoglobin variant ParPgb-HYA-5213, engineered to
activate NH,OH, under different redox conditions (Figure
2a). UV—vis analysis of the resting state of ParPgb-HYA-5213
(E,,) in solution shows a Soret band at 413 nm and a broad Q-
band at 543 nm. The addition of a 200-fold excess of sodium
dithionite (Na,$S,0,) relative to E, results in the reduced form
of the protein, E, .4, and shifts the bands to 434 and 562 nm.
Meanwhile adding a 600-fold excess of NH,OH relative to E,4
instantaneously generates a new spectrum with bands at 425,
530, and 560 nm. In contrast, addition of NH,OH to E_, does
not alter the spectrum (Figure S1), suggesting that NH,OH
interacts with E 4 to form E_ gya.

Interestingly, E .qpa is not indefinitely stable and decom-
poses under ambient conditions through well-defined iso-
sbestic points at 438 and 572 nm (Figure 2b). The presence of
distinct isosbestic points indicates the absence of a steady-state
intermediate. UV—vis analysis of the reaction mixture indicates
the evolution of E,, (Figure S2). In the presence of a benzylic
C—H-containing substrate, the conversion of E,guys to E,,
occurs more rapidly (Figure S3) and is accompanied by the
formation of aminated product, as determined by HPLC-MS.

To obtain further information regarding the reactive
intermediate involved in amination, we carried out electron
paramagnetic resonance (EPR) experiments. X-band CW-EPR
spectra of E,, E g4, and E, gy display no S = 1/2 signals at 77
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Figure 2. (a) UV—vis spectra of ParPgb-HYA-5213 protein in its resting state (E,,) and its reduced state (E,.4) and the hydroxylamine adduct of
the reduced protein (E,equy)- (b) UV—vis spectra collected during the decomposition of E gy, to E,,, with isosbestic points at 438 and 572 nm.
(c) Experimental (black line) and simulated (red line) Q-band pseudomodulated EPR spectra of the EPR-active species in a frozen solution at 15
K, obtained by mixing E,.4 with NH,OH or "NH,OH. *Indicates a signal arising from the resonator background. See the SI for experimental

details and simulation parameters.
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K (Figure S4), indicating that the heme exists in a high-spin
configuration. However, the addition of 600-fold excess of
NH,OH relative to E,.4 produces a rhombic EPR signal at 77
K with g-values near g = 2 (g = [2.087, 2.004, 1.970]),
consistent with a ground spin-state of S = 1/2 (Figure $4).
Comparison of the EPR signal with that of free hemin, along
with varying concentrations of protein and heme loading,
revealed that the signal is dependent on heme-bound protein
(Figures SS and S6). Additionally, mutating the axial ligand
from histidine to methionine alters the redox potential of the
protfsin and the g-values of the EPR signal (Figures S7 and
S8).

Next, we investigated the stability of the EPR-active species
by monitoring its signal intensity over time. The EPR signal
appears instantly upon addition of NH,OH at t = 0, reaching a
maximum at ¢ = 5 min. The signal intensity then starts to decay
and completely disappears by t = 30 min (Figure S9).
Moreover, to confirm that the signal depends on NH,OH, we
compared the hyperfine coupling of the EPR signal using both
naturally abundant and "*N-labeled hydroxylamine. Differences
between these isotopologues in the X-band CW-EPR spectra
(Figure S10) were only clearly discernible at the intermediate
gvalue (g &~ 2.004), and only well-resolved at temperatures
lower than 77 K (Figure S11), perhaps owing to T, broadening
or involvement of thermally accessible excited states at higher
temperatures. To probe the electronic structure of this
intermediate, we turned to higher frequency Q-band (34
GHz) pulse EPR spectroscopy. We observe a very distinct
difference in the hyperfine splitting at the intermediate g-value
in '*N-labeled samples (Figure 2c and Table S1). This change
in the hyperfine coupling pattern confirms the electron spin
interacting with NH,OH.

We hypothesized that the nitrogen incorporation reactivity
arises from the nitrenoid radical species, Ejnj. However, Epy;
would not exhibit an § = 1/2 EPR signal; hence, we examined
the reaction using the spin-trap 5,5-dimethylpyrroline-N-oxide
(DMPO, l).%_48 Compound 1 is EPR-silent; however, the
reaction mixture — prepared by adding an excess of NH,OH
to E, .4 followed by the addition of an excess of 1 after S min
— becomes EPR-active. The DMPO adducts generated from
either NH,OH or 'SNH,OH are sufficiently stable for
observation by room temperature X-band CW-EPR (Figure
3a and Table S2). High-resolution electrospray ionization mass
spectrometry (HR-ESI-MS) of the spin-trapped sample of
NH,OH shows a mass at m/z = 129.1024, corresponding to
the DMPO-adduct (2-NH,), while the HR-ESI-MS of the
spin-trapped EPR sample of ""NH,OH displays a mass at m/z
= 130.0999, corresponding to the DMPO-adduct (2-'*NH,)
(Figure 3b). The spin-trapped EPR data and the correspond-
ing HR-ESI-MS results strongly suggest that the reaction
proceeds through a nitrenoid radical species.””*’

During our investigation into the EPR-active species, we
discovered that the features of the EPR spectra were similar to
those of a six-coordinate iron-nitrosyl {FeNO}’ spe-
cies."”"***7>? This prompted us to look for enzymatic
pathways involving hemoproteins while also containing
NH,OH and NO as intermediates. We identified two: aerobic
ammonia oxidation and the nitrite reductase pathways.”’~%*
The similarity between engineered protoglobin-mediated
nitrogen incorporation and the nitrite reductase pathway led
us to investigate the intermediates of this pathway as potential
aminating reagents (Figure §12).547%
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Figure 3. (a) Experimental (black line) and simulated (red line) X-
band CW-EPR spectra of the DMPO adducts, obtained by mixing
E.q and 1 in solution at room temperature with NH,OH or
SNH,OH. (b) HR-ESI-MS spectra of the DMPO adducts obtained
by treating E,4 and 1 with NH,OH or *NH,OH.

To investigate the potential of nitrogen cycle intermediates
to serve as aminating reagents, we first analyzed the UV—vis
spectral features of E, .4 in the presence of an excess of NO,~,
NO, and HNO (Figures S13—S15). The reaction mixtures
with NO,™ and NO displayed spectral features at 422 and 568
nm, which gradually decayed over 100 min, resulting in the
formation of E,,. Conversely, the mixture with HNO exhibited
spectral features like those with NH,OH and decayed to E,
over 30 min. Thus, the formation of E,, is slower with NO,~
and NO than with HNO and NH,OH.

Next, we investigated the EPR features of E 4 by exposing it
to an excess of NO,”, NO, HNO, and '*NO,", analyzing the
results using both X-band CW-EPR (Figure S11) and Q-band
pulse field-swept EPR spectra (Figure 4a and Table S1).
Furthermore, the HR-ESI-MS analysis of the DMPO spin-
trapped sample with E,.q4 and NO,™ revealed a mass at m/z =
129.1021, corresponding to 2-NH, (Figure 4b and 4c). These
results indicate that the activation of NH,OH, NO,~, NO, and
HNO by E,q leads to the formation of a common iron-nitrosyl
intermediate that can further generate an iron-nitrenoid
intermediate downstream (Figures S16—S29 and Table
$3).7-70

Since ParPgb-HYA-5213 effectively aminates p-ethylanisole
(3) with NH,OH, we explored its activity with the other
nitrogen reagents. We found that all of them can promote
benzylic C—H amination of 3, yielding 4-NH, (Figure 4b and
4d). Specifically, NH,OH achieves a yield of 90.7% with >99%
enantiomeric excess (ee), NO,™ results in 26.2% yield and
>99% ee, NO provides 17.8% yield and >99% ee, and HNO
yields 89.8% with >99% ee (Figure 4d and SI Sections 1.3 and
1.4). Furthermore, "NH,0OH and NO,™ also give 4-'NH,
with moderate-to-high yield and excellent enantioselectivity.
The nitrogen incorporation reactivity suggests that the iron-
nitrosyl species is an on-pathway intermediate (Figure S30),
and the high enantioselectivity indicates that the reaction
occurs within the enzyme active site.
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frozen solution at 15 K, obtained by mixing E,.q with different aminating reagents such as NH,OH, NO,”, NO, HNO, "NH,OH, or “NO,".
*Indicates a background signal from the resonator. (b) The reduced ParPgb-HYA-5213 (E,4) protein, when treated with NH,OH or NO,~,
transfers the nitrogen group to form 2-NH, and 4-NH, from 1 and 3, respectively. (c) HR-ESI-MS spectrum of the DMPO adducts, obtained by
treating E, .4 and 1 with NH,OH or NO,". (d) Biocatalytic nitrene transfer to the benzylic C—H bond of 3 to form 4-NH, with different aminating
sources. See the SI for experimental details and optimized reaction conditions. (e) Evidence from the EPR, HR-ESI-MS of spin-trap, and amination
product yield and enantioselectivity suggests that protoglobin-mediated benzylic C—H amination goes through a nitrite reductase-type pathway.

Although the protein was originally engineered for nitrogen
incorporation using NH,OH, mechanistic insights revealed its
ability to also activate NO,”, NO and HNO for nitrogen
incorporation. Based on these findings, we propose a new
catalytic cycle for protoglobin-mediated C—H amination,
inspired by the nitrite reductase pathway (Figure 4e), wherein
NO,™ is reduced by dithionite to NO, then to HNO, then
NH,OH, which finally incorporates nitrogen into organic
molecules via a putative iron-nitrenoid intermediate.”””" This
proposed mechanism also correlates to the lower yields and the
slower rate of consumption of NO,™, due to the successive
reduction steps. However, directed evolution could be used to
generate variants that can efficiently activate these new
reagents.

In conclusion, we have spectroscopically characterized an
iron-nitrosyl intermediate derived from NH,OH within a
protoglobin active site, which we propose generates an iron-
nitrenoid intermediate downstream. The mechanistic insights
gained from characterizing the iron-nitrosyl intermediate led to
the discovery of NO,”, NO, and HNO as nitrene precursors
for C—H amination. Based on the evidence from EPR, HR-
ESI-MS, and amination product yield and enantioselectivity,
we have proposed a catalytic cycle for C—H amination using
these reagents inspired by the nitrite reductase pathway. This
study highlights the potential of engineered hemoproteins to
access natural nitrogen sources for sustainable chemical
synthesis, offering a new perspective on the utilization of
nitrogen cycle intermediates in biocatalysis. These insights
could pave the way for further exploration of natural metabolic
pathways and might lead to the discovery of naturally
occurring C—H functionalizing “nitrene transferases”.
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